アルミニウム合金桁の横倒れ耐荷力

ALST 研究レポート 36

2014年3月

大阪大学大学院工学研究科

西森文子,大倉一郎

概要

本研究では、有限要素法による弾塑性有限変位解析によって、桁の横倒れ耐荷力が明らかにされ、その算定式が与えられる.

目次

第1章	「序論」 「「字論」	•••1
第2章	圧縮を受ける平板部材	•••3
第3章	FEM による弾塑性有限変位解析	•••6
第4章	前荷力表示で使用されるパラメータ	•••9
第5章	平板部材の寸法の決定方法	•••11
第6章	6000 系アルミニウム合金の平板部材の耐荷力	· · · 12
	6.1 中央接合	•••12
	6.2 中間接合	•••13
	6.3 增厚中間接合	•••14
	6.4 A6061-T6 と A6005C-T5 の平板部材の耐荷力の比較	•••16
第7章	A5083-0の平板部材の耐荷力	•••19
第8章	耐荷力曲線	•••21
	8.1 耐荷力曲線の定式化	•••21
	8.2 ECCS の耐荷力曲線との比較	· · · 25
第9章	結論	•••27
参考文	献	•••29
付録	数値データ	•••31

第1章 序論

近年,アルミニウム歩道橋や拡幅歩行者用アルミニウム床版が建設されるようになってきた¹⁾. さらに,道路橋用アルミニウム床版が開発され^{2),3)},その試験施工が実施されている⁴⁾. アルミニウム床版の重量は鉄筋コンクリート床版の重量の約 1/5 と軽い. この特徴を活かして, 上路式鋼アーチ橋の鉄筋コンクリート床版をアルミニウム床版で取り替えることによる耐震性 の向上に関する研究が行われるようになってきた⁵⁾. このような状況で,道路橋用アルミニウム 床版のみならず,道路橋用の桁もアルミニウム合金で製作できるようになることが期待される.

図-1.1 に示す、従来のアルミニウム歩道橋の桁の製作方法は鋼桁のそれと同様で、アルミニ ウム合金 A5083-O の圧延板を MIG 溶接による隅肉溶接で連結することにより製作される. 道路 橋は歩道橋より規模が大きく、歩道橋よりも格段に大きな荷重を受けるので、0.2%耐力の低い A5083-O を使って道路橋を設計することは困難である. 道路橋の桁の製作には 0.2%耐力の高い A6061-T6 や A6005C-T5 などの熱処理アルミニウム合金を使用しなければならない. しかし、6000 系アルミニウム合金は熱処理によって 0.2%耐力が高められているので、MIG 溶接で溶接した場 合、溶接部の 0.2%耐力が低下する. したがって、図-1.1 に示す桁を、6000 系アルミニウム合金 を用いて MIG 溶接で製作した場合、垂直補剛材をウェブに連結する隅肉溶接の位置で桁の強度 が低下する. そこで、図-1.2 に示すような、T 型断面の押出形材を摩擦撹拌接合(FSW)^{1,6),7)}によ って接合することにより、突起が水平方向に配置されたアルミニウム合金桁が提案された⁸⁾. こ の桁には垂直補剛材が存在せず、ウェブを横断する接合がないので、桁の一断面で強度が低下す ることはない. さらに、突起は水平方向に連続するので、強度部材として曲げ応力を分担させる ことができる.

図-1.2 に示す,突起付きアルミニウム合金桁の実用化を目指して,圧縮を受ける両縁支持板⁹,曲げを受ける両縁支持板¹⁰およびせん断を受ける4辺単純支持板¹¹⁾の耐荷力が有限要素 法による弾塑性有限変位解析によって調べられた.さらに,摩擦撹拌接合を用いて,突起付きア ルミニウム合金板が試作され,その初期たわみと接合残留応力が測定された¹²⁾.

その後, 突起付きアルミニウム合金桁のウェブの断面形状を決定する方法として, 座屈強度と

終局強度を考慮して,面内曲げを受ける,突起付きアルミニウム合金板の断面形状を決定する方法が提案された¹³⁾.曲げを受けるI型断面の桁の耐荷力は,フランジの横倒れ耐荷力で決まる.フランジの板厚が薄い場合には,フランジは局部座屈を起こす.そこで,圧縮を受ける自由突出板の耐荷力が調べられた¹⁴⁾.

本研究では、アルミニウム合金桁の横倒れ耐荷力を明らかにし、その算定式を与えることを目 的とする.

第2章 圧縮を受ける平板部材

曲げを受ける突起付き桁を図-2.1 に示す.ウェブが降伏モーメントを維持するとき,曲げを 受ける桁の耐荷力は,圧縮フランジの横倒れ耐荷力で与えられる.そして,圧縮フランジの横倒 れ耐荷力は,図-2.2 に示すように,破線で示される,圧縮フランジとウェブが交差する位置で, 鉛直方向の変位が拘束された,幅が *B_f*で,厚さが *t_f*の平板部材が圧縮を受けて水平方向に座屈 するときの耐荷力として与えられる.

図-2.1 圧縮フランジの横倒れ座屈

図-2.2 圧縮を受ける平板部材

文献 14)に示す,Ⅰ型断面の桁のフランジの製作方法を考慮して,図-2.3に示す平板部材を扱う.図-2.3(a)は,Ⅰ型断面の押出形材を使用することによって,フランジとウェブとの間に接合がない場合である.現在,我国で製造できるΤ型断面の押出形材の幅は約250mmである¹⁵⁾.したがって,非接合の平板部材の最大幅は約250mmである.

フランジ幅が約 250mm を超える場合には,図-2.3(b),(c),(d)に示す接合が考えられる.図-2.3(b)は,MIG 溶接を用いて,フランジとウェブを隅肉溶接で連結することにより,I型断面の桁を製作する場合に対応する.6000 系の熱処理アルミニウム合金の場合,隅肉溶接のルートからウェブとフランジの各側 25mm の範囲が強度低下を起こす^{6),16)}.したがって,ウェブの板厚を 無視すると,平板部材の中央の 50mm の範囲が強度低下を起こす.

図-2.3(c)は、摩擦撹拌接合によって、T型断面の押出形材の突出縁に平板を突合せ接合することにより、I型断面の桁のフランジを製作する場合に対応する.6000系の熱処理アルミニウム合金の場合、接合中心から各側25mm、すなわち合計50mmの範囲が強度低下を起こす^{6,16}.

6000 系の熱処理アルミニウム合金に対して,図-2.3(d)は,強度低下を起こす範囲の板厚を厚 くすることにより,接合部の強度低下が補われた平板部材である.押出形材の製造においては, 形材の端を部分的に厚くすることは容易である.接合中心から各側 25mm,すなわち合計 50mm の範囲の板厚を次式で与えられる板厚に増厚することにより,0.2%耐力に関して,接合部の断 面強度は母材のそれと同じになる.

$$t_j = \frac{\sigma_{0.2}}{\sigma_{j0.2}} t \tag{2.1}$$

凶-2.3 千饭即约

図-2.4 を参照して、平板部材の水平方向(y軸方向)に対して、次式で与えられるサイン半波形の初期たわみを仮定する.

$$v_0 = \frac{l}{1000} \sin\left(\frac{\pi x}{l}\right) \tag{2.2}$$

ここに, v₀:平板部材の水平方向の初期たわみ

1 : 平板部材の長さ

図-2.4 初期たわみ

式(2.2)の l/1000 は、アルミニウム合金土木構造物設計・製作指針案(第1次改訂試案)¹⁷⁾(以後, JAA 指針と呼ぶ)で規定される、圧縮部材に許容される最大初期たわみである.

摩擦撹拌接合および MIG 溶接による突合せ接合によって製作された板の接合線方向の残留応 力分布は,接合中心から各側 25mm まで一様な引張残留応力,25mm より離れた位置で,一様な 圧縮残留応力となる矩形分布でモデル化され,引張残留応力は接合部の 0.2%耐力に近いことが 明らかにされている¹⁶⁾. さらに,フランジとウェブが MIG 溶接による隅肉溶接によって製作さ れた,A5083-OのI型断面桁のフランジに生じる残留応力が,前述の矩形分布で表されることが 示されている¹⁸⁾. これらを考慮して,平板部材に生じる残留応力分布に対する仮定を図-2.5 に 示す.

図-2.5(a)の中央接合の場合,平板部材の中央からそれぞれ 25mm の範囲に,接合部の 0.2%耐力 σ_{j0.2}に等しい引張残留応力,それ以外の領域に,50σ_{j0.2}/(*B*_f-50)の圧縮残留応力を与える(*B*_fの単位は mm).図-2.5(b)の中間接合の場合,平板部材の中央から *c* の位置の 50mm の幅に 0.2%耐力 σ_{j0.2}に等しい引張残留応力,それ以外の領域に 100σ_{j0.2}/(*B*_f-100)の圧縮残留応力を与える(*B*_fの単位は mm).図-2.5(c)の増厚中間接合の場合,平板部材の中央から *c* の位置の 50mm の幅に 0.2%耐力 σ_{j0.2}に等しい引張残留応力,それ以外の領域に 100σ_{0.2}/(*B*_f-100)の圧縮残留応力を与える(*B*_fの単位は mm).

第3章 FEMによる弾塑性有限変位解析

圧縮を受ける平板部材の耐荷力を算出するために,次式で与えられる応力-ひずみ関係を使用 する¹⁶⁾.

母材
$$\begin{cases} \varepsilon = \frac{\sigma}{E} + 0.002 \left(\frac{\sigma}{\sigma_{0,2}}\right)^n & (\sigma \le \sigma_{0,2}) \\ \sigma = \sigma_{0,2} & (\sigma > \sigma_{0,2}) \end{cases}$$
(3.1)
接合部
$$\begin{cases} \varepsilon = \frac{\sigma}{E} + 0.002 \left(\frac{\sigma}{\sigma_{j0,2}}\right)^{n_j} & (\sigma \le \sigma_{j0,2}) \\ \sigma = \sigma_{j0,2} & (\sigma > \sigma_{j0,2}) \end{cases}$$
(3.2)

σ_{0.2}とσ_{i0.2} :母材と接合部の0.2%耐力

nとn_i :母材と接合部のひずみ硬化パラメータ

本研究では、熱処理アルミニウム合金 A6061-T6 と A6005C-T5,非熱処理アルミニウム合金 A5083-O を扱う. これらのアルミニウム合金の 0.2%耐力 $\sigma_{0.2}$ と $\sigma_{j0.2}$, ひずみ硬化パラメータ n と n_j の値を表-3.1 に示す. 母材と接合部の 0.2%耐力に対して JAA 指針 ¹⁷⁾で規定される値を用 いる. JAA 指針で規定される接合部の 0.2%耐力は、MIG 溶接に対するものである. 摩擦撹拌接 合は MIG 溶接ほど入熱量が大きくないので、摩擦撹拌接合部の 0.2%耐力は MIG 溶接部の 0.2%耐力より高いと考えられる. しかし十分なデータがないので、摩擦撹拌接合部の 0.2%耐力に対して、JAA 指針で規定される MIG 溶接に対する値を採用する. 他方、ひずみ硬化パラメータ n と n_j の値は、引張試験の結果に基づいて、非超過確率 5%に対する値である ¹⁶⁾. 式(3.1)と(3.2)に おいては、0.2%耐力以上のひずみ硬化を考慮していない.

	.F1.+	- -		接合	合部	
***	戸1	N	MIG	容接	摩擦撹拮	半接合
1/1 1/1	$\sigma_{0.2}$	10	$\sigma_{j0.2}$	12	$\sigma_{j0.2}$	12
	(MPa)	п	(MPa)	n_j	(MPa)	n_j
A6061-T6	245	29.1	108	5.3	108	10
A6005C-T5	175	29.1	98	5.3	98	10
A5083-O	127	5.3	127	5.3	127	5.3

表-3.1 0.2%耐力とひずみ硬化パラメータの値

弾塑性有限変位解析には汎用有限要素解析プログラム MARC¹⁹⁾を使用する.後の図-3.1 に示 すように,圧縮を受ける平板部材を8節点アイソパラメトリックシェル要素(MARC における 要素番号 22)で要素分割する.境界条件を表-3.1 に示す.辺AC と辺BEのz軸方向の変位を 拘束する.辺DFに対称性の境界条件を与える.辺ACに剛棒を設け,点Bのy軸方向の変位を 拘束する.さらに,点Bをx軸方向に強制変位させることによって,平板部材に圧縮荷重を与 える.3次元弾性梁要素(MARCにおける要素番号52)の伸び剛性とねじり剛性をゼロ,曲げ 剛性に大きな値を設定することにより,剛棒を実現する.平板部材の8節点アイソパラメトリッ クシェル要素の節点と3次元弾性梁要素の節点を共有させる.点Bの位置の節点と辺AC上の 各節点をタイイングし,点Bのz軸回りの回転角と辺AC上の各節点のz軸回りの回転角が同じ になるようにする.

		変位		П	転	
	x 方向	y 方向	z方向	y軸回り	z 軸回り	A F
辺 AC	—	—	固定	—	—	
辺 BE	—	—	固定	—	—	y D
辺 DF	固定	—	—	固定	固定	
点 B	強制変位	固定				

表-3.1 境界条件

圧縮を受ける自由突出板が非接合の場合,板幅方向の要素分割数が4で十分な解析精度が得られることが示されている¹⁴⁾. したがって,平板部材の幅を8等分割し, *x*軸方向の要素分割は, 平板部材の長さに依存して,1要素の*y*軸方向の長さに対する,*x*軸方向の長さが0.9 から1.1 の 範囲になるようにする.

他方, 圧縮を受ける自由突出板が接合部を有する場合, 接合部の1要素の1辺の大きさが25mm となるように分割すれば十分な解析精度が得られることが示されている¹⁴⁾.要素分割の例を図 -3.1(a)に示す.これは, 平板部材の幅が400mmで, 平板部材の中央から接合中心までの距離*c* が100mmの中間接合 [図-2.3(c)] に対するものである.1要素の板幅方向の1辺の長さが25mm となるように等分割し, *x*軸方向の要素分割は, 平板部材の長さに依存して, 1要素の*y*軸方向 の長さに対する, *x*軸方向の長さが0.9 から1.1 の範囲になるようにしてある.

図-3.1(a)の要素分割では、平板部材の幅と長さが大きくなるに従って要素数が多くなり、計 算時間が長くなる.そこで、図-3.1(b)は、要素数を減らすことを考えた要素分割である.平板 部材の幅を8等分割し(実線)、x軸方向の要素分割は、平板部材の長さに依存して、1要素の y 軸方向の長さに対する、x 軸方向の長さが0.9 から1.1 の範囲になるようにしてある.さらに、 接合部の1要素の板幅方向の長さが25mm以下になるように、接合部を細分割(破線)する. 図-3.1(a)と(b)の要素分割に対する計算結果を表-3.2 に示す. σ_{fu} は、有限要素法解析において、 荷重が増加しなくなったとき、辺DFに生じるx軸方向の反力の合計を断面積で除して得られる 値である. $\lambda \ge \sigma_{p02}$ は、それぞれ細長比パラメータと圧縮強度の上限値であり、次章で説明する. 両者は同じ計算結果を与えるので、図-3.6(b)に示す要素分割に対して計算を行う.

Т	Т	Т	Τ	Τ	Т	Т	Т	Γ		Г	Г	Г	Γ					Т	Т	Т				Т	Г				Т	Т	Г			Т			Т	Г			Т					Т	Т	Т				Т	Т	Г					Т	Г	Г				Т	Т	1
Т	Т	Т	Т	Т	Т	Т	Т	Г		г	Г	Г	Г					Т	Т	Т			Т	Т	Г			Т	Т	Т	Г		Т	Т			Т	Г		Т	Т				Т	Т	Т	Т	Г			Т	Т	Г				Т	Т	г	Г		П		Т	Т	Т
Т	т	Т	т	Т	т	Т	Т	Г	Г	г	Г	Г	Г					Т	т	Т	Г	П	Т	Т	Г	П	П	Т	т	Т	Т		Т	Т	П		Т	Т		Т	Т	П		Т	Т	т	Т	Т	Г		П	Т	Т	Г				Т	т	Г	Г	Г	П	П	Т	т	7
F	Т	Т	Т	T	Т	Т	Т	Г		Г	Г	Г	Г					T	Т	Т				Т	Г			Т	Т	Т	Г		Т	Т			Т	Г			Т			Т		Т	Т	Т				Т	Т	Г				Т	Т	Т	Г				Т	Т	Ē
П	Т	Т	т	т	т	т	Т	Г		г	Г	Г	Г					Т	т	Т	Г		Т	Т	Г				т	т	Т		Т	Т	П		т	г			т			Т	Т	т	т	Т				Т	Т	Г				Т	т	П	г	Г			Т	т	i
Г	т	т	т	т	т	т	Т	г		г	г	г	г					т	т	Т	г	П	т	т	г	П		Т	т	т	т		т	т	П		т	г		Т	т			Т	т	т	т	Т	г			т	т	г				т	т	т	г	г	а		т	т	i
т	т	т	т	T	т	т	т	г	-	г	г	г	г			_		-	т	т	г	П	T	т	г	П	П	т	т	т	т		-	т	П		т	г		т	т	П		-		т	т	т	г		П	т	т	г			_	-	т	т	г	г	а	П	т	т	1
t	t	T	+	1	t	Ŧ	T	F	-	t	t	F	F					-	T	T	F		+	T	T	Н	Н		T	T	t		-	+	T		T	t	Н		T	Н			+	T	T	t	1		П	+	+	t				+	+	t	t	F	п	Н	+	T	1
t	t	t	+	1	1	+	T	t		t	t	t	t					1	+	T				T	T	Н	H		+	T	t		-	+	t		T	t	Н		T					T	1	t			Н	+	T	t				1	1	t	t		п	H		T	1
t	t	t	+	+	+	+	t	t	F	t	t	t	t	Н		-		-†	+	t	t	H	+	t	t	Ħ	H	-	+	t	t		-	+	Ħ	H	t	t	н		t	Ħ		-1	+	t	+	t	t	Н	H	+	t	t	Н			-	+	t	t	t	н	H	+	Ŧ	1
Т	Т	Т	т	т	т	т	Т	г	г	г	г	Г	г					т	т	Т	г	п	т	т	г	П	п	Т	т	т	г		Т	т	П		т	г		Т	т	П		Т	т	т	т	Т	г		п	т	т	г				Т	т	т	г	г	а	п	т	т	î
t	T	Т	T	T	T			F		t	F	t	F					-	+		t								T	T	T						T	T			T					T	T	T						T					T	t i	T					T	i
t	t	t	t	T	t	T	T	F		t	t	t	F					1	T	t	t			T	t	Ħ			T	T	t		-		T		t	t			t			-1		T	T	t				T		t				-	+	T	t	t				T	1
t	t	t	+	1	+	+		t		t	t	t	t			-		-	+		t			t	t	Н	H		+	+	t		+		Ħ		+	t	н		+	Н				T	+				H	+		t	н				+	T	t	t	п	H	+	+	•
t	t	t	+	+	+	+	t	t	F	t	t	t	t	Н	-	-	-1	-†	+	t	t	H	+	t	t	Ħ	H		+	t	t		-	+	Ħ	H	t	t	н		t	Ħ		-1	+	t	+	t	t	Н	H	+	t	t	Н			-	+	t	t	t	н	H	+	Ŧ	1
t	t	t	+	+	+	+	+-	t	-	t	+-	t	+	-	-	-	-	-+	+	+-	+-	-	-	+	+-	-	-	-	+	+	+-	-	-+	+	-		+	+	-	-	+	+	-	-	-+	+	-	+-	-	_	-	-		-	-	-	-	-+	+	+-	+-	+-	-	-	-	+	-

(a)1辺の長さが25mmの等分割

																							_												
-																							 				 				 				
-	-	-	_			-	-	-	-	_		_	-	-	-	-	-	-	-	_		_	-		-	_	_				_	_			-
_	_	-	_	-	_	-	_	_	_	_	_	_		_	_	_			_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_

(b) 接合部の細分割

図-3.1 要素分割

1	$\sigma_{fu'}$	$\sigma_{p0.2}$
λ	図 -3.1(a)	図 -3.1(b)
0.5	0.918	0.918
1.0	0.665	0.665
1.5	0.374	0.374

表-3.2 計算結果の比較

第4章 耐荷力表示で使用されるパラメータ

第2章で述べたように、アルミニウム合金 A6061-T6 と A6005C-T5 の接合部の 0.2%耐力は 母材のそれより低い. このような平板部材の圧縮強度の上限値は次式で与えられる.

$$\sigma_{p0.2} = \frac{A - A_j}{A} \sigma_{0.2} + \frac{A_j}{A} \sigma_{j0.2}$$
(4.1)

ここに, *σ*_{p0.2} : 平板部材の圧縮強度の上限値

A : 平板部材の全断面積

A_i : 平板部材の接合部の断面積

中央接合 [図-2.3(b)] と中間接合 [図-2.3(c)] に対して,アルミニウム合金 A6061-T6 と A6005C-T5 の圧縮強度の上限値 *σ*_{00.2}はそれぞれ次式で与えられる.

$$\sigma_{p0.2} = \frac{B_f - 50}{B_f} \sigma_{0.2} + \frac{50}{B_f} \sigma_{j0.2} \tag{4.2}$$

$$\sigma_{p0.2} = \frac{B_f - 100}{B_f} \sigma_{0.2} + \frac{100}{B_f} \sigma_{j0.2}$$
(4.3)

ここに, *B*f の単位:mm

非接合 [図-2.3(a)] と増厚中間接合 [図-2.3(d)] に対して, A6061-T6 と A6005C-T5 のアル ミニウム合金の圧縮強度の上限値は σ_{0.2} である. A5083-O の場合, 接合部の 0.2%耐力が母材の それと同じであるので, 非接合, 接合ともに圧縮強度の上限値は σ_{0.2} である. これらの板の圧縮 強度の上限値を次式で定義する.

$$\sigma_{p0.2} = \sigma_{0.2} \tag{4.4}$$

本研究では、平板部材の耐荷力を無次元表示する際、接合の種類に応じて、**表-4.1**に示す、 平板部材の圧縮強度の上限値 *o*_{p0.2}を使用する.

アルミニウム合金	非接合	中央接合	中間接合	增厚中間接合
A6061-T6	•	D	C	•
A6005C-T5	A	D	C	A
A5083-O	А	А	А	
E E	A: $\sigma_{p0.2} = \sigma_{0.2}$ B: $\sigma_{p0.2} = \frac{B_f - 50}{B_f} \sigma_0$ C: $\sigma_{p0.2} = \frac{B_f - 100}{B_f}$ Bf: 平板部材の幅	$0.2 + \frac{50}{B_f} \sigma_{j0.2}$ $\sigma_{0.2} + \frac{100}{B_f} \sigma_{j0.2}$ (単位 mm)		

表-4.1 平板部材の圧縮強度の上限値 σ_{p0.2}

圧縮強度の上限値 σ_{p0.2}を用いることにより、細長比パラメータは次式で定義される.

$$\lambda = \frac{1}{\pi} \sqrt{\frac{\sigma_{p0.2}}{E}} \frac{l}{r}$$
(4.5)

ここに, λ : 細長比パラメータ

l : 平板部材の長さ

r : 平板部材の断面に対する回転半径

rは次式で与えられる.

$$r = \sqrt{\frac{(B_f^3 t_f / 12)}{B_f t_f}} = \frac{B_f}{2\sqrt{3}}$$
(4.6)

式(4.6)を式(4.5)に代入して、平板部材の細長比パラメータが次式で与えられる.

$$\lambda = \frac{2\sqrt{3}}{\pi} \sqrt{\frac{\sigma_{p0.2}}{E}} \frac{l}{B_f}$$
(4.7)

第5章 平板部材の寸法の決定方法

本研究では、局部座屈と横倒れ座屈の連成座屈を扱わないので、局部座屈が起きないようにす るために、次式によって平板部材の厚さを決める.

$$t_{f} = \frac{1}{\pi} \sqrt{\frac{12(1-\mu^{2})}{0.425} \frac{\sigma_{p02}}{E}} \frac{(B_{f}/2)}{R_{f10}}$$
(5.1)

ここに、 *μ* :ポアソン比 (=0.3)

*R*_{f1.0} : 自由突出板の耐荷力が σ_{p0.2}を維持する限界の幅厚比パラメータの値 文献 14)で与えられる *R*_{f1.0}の値を表-5.1 に示す.

アルミ	ニウム合金	A6061-T6	A5083-O
		A6005C-T5	
非	接合	0.6	
增厚中間接合*(400m	$m \le B_f$, 100mm $\le c < B_f/2$)	0.6	
由市坛公	$200\mathrm{mm} \le B_f \le 400\mathrm{mm}$		0.4
十六饭口	$400 \mathrm{mm} \leq B_f$	0.5	
中間接合(400mm≤	B_f , 100mm $\le c < B_f/2$)		

表-5.1 R_{f1.0}の値

B_f: 平板部材の幅

c : 平板部材の中央から接合中心までの距離

*: A5083-O に増厚中間接合は適用されない.

次式によって平板部材の長さを決める.

$$l = \frac{\pi}{2\sqrt{3}} \sqrt{\frac{E}{\sigma_{p02}}} B_j \lambda \tag{5.2}$$

平板部材の幅 B_f に対して,式(5.1)より厚さ t_f を決め,細長比パラメータ λ に対して平板部材の長さlを式(5.2)より決める.

第6章 6000系アルミニウム合金の平板部材の耐荷力

6.1 中央接合

アルミニウム合金 A6061-T6 の中央接合に対する $\sigma_{fu}/\sigma_{p0.2}-\lambda$ 関係を図-6.1 (数値データは付録 参照)に示す. 平板部材の幅 B_f に対して、200mm、400mm、600mm を扱い、残留応力の有無を 考慮している. 非接合に対する結果は、平板部材の幅が変化しても同じであることを確認してい る. 図-6.1 から分かるように、すべての解析結果が重なっているので、残留応力の影響はない. 圧縮残留応力 σ_{rc} が母材の 0.2%耐力 $\sigma_{0.2}$ で無次元化された値を表-6.1 に示す(同表には、後で述 べる中間接合および増厚中間接合に対する値も示してある). A6061-T6 の中央接合の場合、圧 縮残留応力が母材の 0.2%耐力よりかなり小さいことが、残留応力が耐荷力に及ぼす影響がない 理由と考えられる.

図-6.1 中央接合に対する耐荷力(A6061-T6)

接合の位置	D (mm)	σ_{rc}	$\sigma_{0.2}$
1安口 07111 匣	$D_f(\Pi\Pi\Pi)$	A6061-T6	A6005C-T5
	200	0.147	0.187
中央接合	400	0.063	0.08
	600	0.04	0.051
中間接合	600	0.088	0.112
增厚中間接合	600	0.2	0.2

表-6.1 圧縮残留応力 *σ_{rc}/σ*0.2 の値

6.2 中間接合

アルミニウム合金 A6061-T6 の中間接合に対する $\sigma_{fu}/\sigma_{p0.2}-\lambda$ 関係を図-6.2に示す (数値データ は付録参照). 平板部材の幅 B_f を 600mm として、平板部材の中央から接合中心までの距離 cに 対して、100mm、200mm、250mm を扱っている. 残留応力の有無を考慮している. 図-6.2 から 分かるように、c=100mm の場合、残留応力の有無に関わらず、 $\sigma_{fu}/\sigma_{p0.2}$ は、非接合のそれとほぼ 同じである. cが大きくなるに従って、 $\sigma_{fu}/\sigma_{p0.2}$ は低下する. 残留応力なしの $\sigma_{fu}/\sigma_{p0.2}$ が残留応力 ありのそれより低下する. 表-6.1に示すように、圧縮残留応力が母材の 0.2%耐力よりかなり小 さいので、圧縮残留応力の影響は小さい. したがって、接合部に存在する、母材の 0.2%耐力に 対して 0.441 倍の大きさの引張残留応力が、荷重作用によって生じる圧縮応力を相殺するために、 残留応力が存在する方が、存在しない場合より耐荷力が大きくなると考えられる.

図-6.2 中間接合に対する耐荷力(A6061-T6)

平板部材の幅が中間接合に対する耐荷力に与える影響を図-6.3 に示す(数値データは付録参照).残留応力は考慮されていない.図-6.3の各図から分かるように, B_f =400mmに対する $\sigma_{fu}/\sigma_{p0.2}$ が B_f =600mmに対するそれより低い.これは、全断面積に対する接合部の断面積の比率が B_f =400mmの方が B_f =600mmより大きいためである.

図-6.3 平板部材の幅が中間接合に対する耐荷力に与える影響(A6061-T6)

6.3 增厚中間接合

アルミニウム合金 A6061-T6 の増厚中間接合に対する $\sigma_{fu}/\sigma_{p0.2} - \lambda$ 関係を図-6.4 に示す (数値デ ータは付録参照).本解析は、式(2.1)で与えられる厚さを幅 50mm の接合部に与えること以外、 前節の中間接合で、平板部材の幅 B_f が 600mm と同じ解析条件である.図-6.4 から分かるように、 c=100mmの場合、残留応力の有無に関わらず、 $\sigma_{fu}/\sigma_{p0.2}$ は、非接合のそれとほぼ同じである.残 留応力なしの場合、 $\sigma_{fu}/\sigma_{p0.2}$ は、 λ が 0.7 から 1.3 の範囲で、cが大きくなるに従ってわずかに低下 し、 λ が 1.3 以上の範囲で、cが大きくなるに従って、わずかに上昇する.残留応力ありの場合、 $\sigma_{fi}/\sigma_{p0.2}$ は, *c* が大きくなるに従って上昇する.この上昇の程度は、中間接合のそれより大きい. これは、増厚中間接合の場合、接合部が増厚されるので、引張残留応力に対する断面強度(引張 残留応力×厚さ)が中間接合のそれより大きくなるためであると考えられる.

図-6.4 増厚中間接合に対する耐荷力(A6061-T6)

平板部材の幅が増厚中間接合に対する耐荷力に与える影響を図-6.5に示す(数値データは付録参照).残留応力は考慮されていない.図-6.5の各図から分かるように、板幅が変化しても $\sigma_{fu}/\sigma_{p0.2}$ はほぼ同じ値を示すので、増厚中間接合では板幅の影響はない.

図-6.5 平板部材の幅が増厚中間接合に対する耐荷力に与える影響(A6061-T6)

6.4 A6061-T6 と A6005C-T5 の平板部材の耐荷力の比較

A6061-T6とA6005C-T5の平板部材の耐荷力の比較を図-6.6に示す(数値データは付録参照). これらの解析結果は、中央接合は、平板部材の幅 B_f が 200mm に対するもの、中間接合と増厚 中間接合は、平板部材の幅 B_f が 400mm で、c が 150mm に対するものである。中央接合は、残 留応力の影響がないので残留応力を考慮していない、中間接合と増厚中間接合の場合、残留応力 がない方が低い耐荷力を与えるので、残留応力を考慮していない、図-6.6 から分かるように、 非接合、中央接合、中間接合、増厚中間接合の各場合において、A6061-T6 と A6005C-T5 の平板 部材の $\sigma_{fu}/\sigma_{p0,2}$ - λ 関係はほぼ一致している.

図-6.6 A6061-T6とA6005C-T5の平板部材の耐荷力の比較

第7章 A5083-0の平板部材の耐荷力

アルミニウム合金 A5083-O の中央接合に対する $\sigma_{fi}/\sigma_{p0.2}-\lambda$ 関係を図-7.1に示す(数値データ は付録参照). 平板部材の幅に対して B_f =200mm, 400mm, 600mm を扱い, 残留応力を考慮し ている. 図-7.1 から分かるように,中央接合に対する耐荷力は,残留応力の影響により,非接 合に対するそれより低下する. 圧縮残留応力 σ_{rc} が母材の 0.2%耐力 $\sigma_{0.2}$ で無次元化された値を表 -7.1 に示す. 平板部材の幅 B_f が大きくなるに従って圧縮残留応力が低下するので,耐荷力は非 接合に対するそれに近づく.

図-7.1 中央接合に対する耐荷力(A5083-O)

B_{f}	$\sigma_{rc}/\sigma_{0.2}$
200	0.333
400	0.142
600	0.090

表-7.1 圧縮残留応力 *σ_{rc}/σ*0.2 の値(A5083-O)

アルミニウム合金 A5083-O の中間接合に対する $\sigma_{fi}/\sigma_{p0.2}-\lambda$ 関係を図-7.2 に示す(数値データは付録参照). 平板部材の幅 B_f を 600mm として,平板部材の中央から接合中心までの距離 cに対して,100mm,200mm,250mm を扱っている. 残留応力を考慮している. 図-7.2 から分かるように,耐荷力は,cが大きくなるに従って上昇する.

図-7.2 中間接合の耐荷力(A5083-O)

平板部材の幅が中間接合に対する耐荷力に与える影響を**図**-7.3 に示す(数値データは付録参照).残留応力を考慮している. [B_f =400mm, c=100mm]の耐荷力と[B_f =600mm, c=100mm]の耐荷力はほぼ等しいので、中間接合に対する耐荷力に、平板部材の幅が与える影響はない.

図-7.3 [B_f=400mm, c=100mm] と [B_f=600mm, c=100mm] の
 中間接合に対する耐荷力の比較(A5083-O)

第8章 耐荷力曲線

8.1 耐荷力曲線の定式化

アルミニウム合金 A6061-T6, A6005C-T5, A5083-O の平板部材の $\sigma_{fu}/\sigma_{p0.2}-\lambda$ 関係は, 細長比 パラメータ λ のある値で $\sigma_{fu}/\sigma_{p0.2}=1.0$ に交差し, それ以上の範囲で曲線を描く. この曲線を 3 次 曲線では近似の程度がよくないので, 次に示す 4 次曲線で近似する.

$$\frac{\sigma_{fu}}{\sigma_{p0.2}} = \begin{cases} 1 \qquad (\lambda \le \lambda_{1.0}) \\ Q_1 \lambda^4 + Q_2 \lambda^3 + Q_3 \lambda^2 + Q_4 \lambda + Q_5 \qquad (\lambda_{1.0} \le \lambda \le 2) \end{cases}$$

$$(8.1)$$

ここに, *λ*_{1.0} : 耐荷力曲線が *σ*_{ft}/*σ*_{p0.2}=1.0 に交差する細長比パラメータの値 *Q*₁, *Q*₂, *Q*₃, *Q*₄, *Q*₅ : 定数

解析値に最小2乗法を適用して,式(8.1)の下段の式の*Q*₁,*Q*₂,*Q*₃,*Q*₄,*Q*₅の値を決める. そして,式(8.1)の下段の式が1.0となるλの値をλ_{1.0}とする. A6061-T6, A6005C-T5, A5083-O に対する,耐荷力曲線の区分とλ_{1.0},*Q*₁,*Q*₂,*Q*₃,*Q*₄,*Q*₅の値を表-8.1 に示す. さらに,これらの耐荷力曲線を図-8.1 に示す. 次に耐荷力曲線の区分について述べる.

アルミニウム	合金	A6061-T6 A6005C-T5	A5083-O
非接合 增厚中間接合*(400mm≤ <i>B_f</i> ,	$100\mathrm{mm} \le c < B_f/2)$	JA	JC
中市拉公	$200 \text{mm} \le B_f \le 400 \text{mm}$	JA	JD
甲犬按百	$400 \mathrm{mm} \leq B_f$	JA	JE
中間接合(400mm≤B _f , 1	$00\mathrm{mm} \le c < B_f/2)$	JB	JE

表-8.1 耐荷力曲線の区分とλ_{1.0}, λ_{0.65}, m, nの値

	$\lambda_{1.0}$	Q_1	Q_2	Q_3	Q_4	Q_5
JA	0.13	0.05	-0.04	-0.30	-0.03	1.01
JB	0.13	-0.08	0.55	-1.08	0.21	0.99
JC	0.09	-0.14	0.72	-1.13	0.10	1.00
JD	0.09	-0.20	0.95	-1.31	0	1.01
JE	0.09	-0.18	0.91	-1.36	0.12	1.00

 B_f : 平板部材の幅

c : 平板部材の中央から接合中心までの距離

*: A5083-O に増厚中間接合は適用されない.

A6061-T6の非接合の平板部材の耐荷力曲線の作成には,図-6.1に示す非接合に対する解析値を用いる.

図-6.1 に示すように, A6061-T6 の中央接合に対する *σ_{fu}/σ_{p0.2}*は, 非接合に対するそれとほぼ同じであるので, A6061-T6 の中央接合は非接合と同じ耐荷力区分とする.

6.2 節で述べた考察から,A6061-T6の中間接合を有する平板部材の耐荷力曲線の作成には,最 も低い耐荷力を与える,図-6.3(b)に示す [*B*_f=400mm, *c*=150mm]の解析値を適用する.

図-6.4 に示すように、残留応力を考慮しない、A6061-T6 の増厚中間接合に対する $\sigma_{fu}/\sigma_{p0.2}$ は、 非接合のそれをわずかに低下する λ の範囲が存在する.しかし、残留応力を考慮した $\sigma_{fu}/\sigma_{p0.2}$ は 非接合のそれを大幅に上回る.実構造物においては、接合による残留応力がある程度発生する. したがって、A6061-T6 の増厚中間接合は非接合と同じ耐荷力区分とする.

図-6.6に示すように、A6005C-T5の非接合、中央接合、中間接合、増厚中間接合に対する σ_{fu}/σ_{p0.2} -λ関係は A6061-T6 のそれにほぼ一致するため、A6005C-T5 は A6061-T6 と同じ耐荷力区分と する.

A5083-O の非接合の平板部材の耐荷力曲線の作成には,図-7.1 に示す非接合に対する解析値 を用いる.

A5083-Oの中央接合の場合, 図−7.1を参照して, 平板部材の幅を200mm≤B_f ≤400mmとmm400
 ≤B_fの二つに区分する.前者の耐荷力曲線の作成には, 平板部材の幅が200mmの解析値を用い,
 後者の耐荷力曲線の作成には, 平板部材の幅が400mmの解析値を用いる.

A5083-O の中間接合を有する平板部材の耐荷力曲線の作成には、 λ が 1.4 以下で最も低い耐荷 力を与える、図-7.3 に示す [B_f =600mm, c=100mm]の解析値を適用する.図-8.2 に示すよう に、[B_f =600mm, c=100mm]の中間接合に対する解析値は、 B_f =400mmの中央接合に対する解 析値にほぼ等しいので、中間接合は、400mm $\leq B_f$ の中央接合と同じ耐荷力区分とする.

図-8.2 *B_f*=400mmの中央接合と [*B_f*=600mm, *c*=100mm]の中間接合 に対する耐荷力の比較(A5083-O)

各強度区分に対して,式(8.1)が与える耐荷力曲線と解析値との比較を図-8.3 に示す.耐荷力 曲線は解析値にほぼ一致している.

図-8.3 FEM 解析値との比較

8.2 ECCS の耐荷力曲線との比較

ECCS で規定される耐荷力曲線²⁰⁾と式(8.1)が与える耐荷力曲線の比較を図-8.4 に示す. ECCS の耐荷力曲線は, 圧縮を受ける二軸対称断面の押出形材の耐荷力を FEM 解析で算出したものである²¹⁾. ECCS の耐荷力曲線には, 押出形材の最大初期たわみに対して //1000 が考慮され (1 は 部材の長さ), 押出形材には残留応力が発生しないので, 残留応力は考慮されていない. 図-8.4(a) と(b)は, それぞれ熱処理アルミニウム合金 (6000 系アルミニウム合金) と非熱処理アルミニウム合金 (5000 系アルミニウム合金) に対する耐荷力曲線である. 両者ともに, 式(8.1)が与える耐荷力曲線と ECCS の耐荷力曲線はお互いに近い.

第9章 結論

本研究は,有限要素法による弾塑性有限変位解析によって桁の横倒れ耐荷力を明らかにした. 主な結論は次の通りである.

- アルミニウム合金 A6061-T6 の中央接合に対して, σ_{fu}/σ_{p02}表示の耐荷力は, 非接合に対する それにほぼ等しい. 残留応力の影響はない.
- (2) アルミニウム合金 A6061-T6 の中間接合に対して、のfu/のp0.2 表示の耐荷力は、平板部材の中央から接合中心までの距離が 100mm の場合には、残留応力の有無に関わらず、非接合に対するそれにほぼ等しく、その距離が大きくなるに従って、低下する.残留応力を考慮した耐荷力が、残留応力を考慮しない耐荷力より高くなる.これは、接合部に存在する引張残留応力が、荷重作用によって生じる圧縮応力を相殺するためと考えられる.
- (3) アルミニウム合金 A6061-T6 の増厚中間接合に対して、耐荷力は、平板部材の中央から接合 中心までの距離が 100mm の場合には、残留応力の有無に関わらず、非接合に対するそれに ほぼ等しい.平板部材の中央から接合中心までの距離が大きくなると、残留応力を考慮し ない耐荷力は、非接合のそれをわずかに下回る細長比パラメータの範囲が存在する.しか し、残留応力を考慮した耐荷力は非接合のそれを大幅に上回る.これは、増厚中間接合の 場合、接合部が増厚されるので、引張残留応力に対する断面強度(引張残留応力×厚さ) が中間接合のそれより大きくなるためであると考えられる.
- (4) 非接合,中央接合,中間接合,増厚中間接合の各場合において,A6005C-T5とA6061-T6の
 平板部材のσ_{ft}/σ_{p02}表示の耐荷力はほぼ等しい.
- (5) アルミニウム合金 A5083-O の中央接合に対する耐荷力は,残留応力の影響により,非接合 に対するそれより低下する.平板部材の幅が大きくなるに従って,耐荷力は上昇し,非接 合板のそれに近づく.
- (6) アルミニウム合金 A5083-O の中間接合に対する耐荷力は,平板部材の中央から接合中心ま での距離が大きくなるに従って上昇する.
- (7) 本研究の成果に基づいて、次の耐荷力算定式を与えた.

アルミニウム	A6061-T6 A6005C-T5	A5083-O	
非接合 增厚中間接合*(400mm≤ <i>B_f</i> ,	JA	JC	
	$200 \mathrm{mm} \le B_f \le 400 \mathrm{mm}$	JA	JD
甲央按合	$400 \mathrm{mm} \leq B_f$	JA	JE
中間接合(400mm≤B _f , 1	JB	JE	

	$\lambda_{1.0}$	Q_1	Q_2	Q_3	Q_4	Q_5
JA	0.13	0.05	-0.04	-0.30	-0.03	1.01
JB	0.13	-0.08	0.55	-1.08	0.21	0.99
JC	0.09	-0.14	0.72	-1.13	0.10	1.00
JD	0.09	-0.20	0.95	-1.31	0	1.01
JE	0.09	-0.18	0.91	-1.36	0.12	1.00

 B_f : 平板部材の幅

c : 平板部材の中央から接合中心までの距離

*: A5083-O に増厚中間接合は適用されない.

(8) 非接合の平板部材に対して、本研究で与えられた耐荷力曲線は、ECCS²⁰⁾で規定される耐荷 力曲線に近い.

参考文献

- 1) 鋼構造委員会:21世紀の建設材料 アルミニウム合金の可能性,土木学会,平成22年度全国大会研究討論会,研-06 資料,2010.
- 2) 大倉一郎,長尾隆史,萩澤亘保:アルミニウム床版の移動トラックタイヤ載荷疲労試験に よる疲労耐久性評価,構造工学論文集,Vol.56A,pp.1217-1226,2010.
- 3) 日本アルミニウム協会 土木構造物委員会:道路橋用アルミニウム床版を用いた鋼桁橋一 設計・製作・施工ガイドライン,2011.
- 4) アルミニウム橋研究会: 蒲原ケミカル橋. http://alst.jp/str/bridge/kanbara.htm
- 5) 野中哲也, 宇佐美勉: 上路式鋼アーチ橋の RC 床版をアルミニウム床版に取り替えることに よる耐震性の向上, アルミニウム合金材の土木構造物への活用に関するシンポジウム, 土 木学会, 鋼構造委員会アルミニウム構造小委員会, pp.138-147, 2012.
- 6) 大倉一郎, 萩澤亘保, 花崎昌幸: アルミニウム構造学入門, 東洋書店, 2006.
- 7) 日本アルミニウム協会 土木構造物委員会:アルミニウム合金土木構造物の摩擦撹拌接合 部の品質検査ガイドライン,2010.
- 8) 大倉一郎,北村幸嗣,赤崎圭輔,卯瀧高久,ビッグ・ラズロ・ゲルゲリ,三河克己:新しいアルミニウム合金製補剛桁の提案,構造工学論文集,Vol.51A,pp.203-210,2005.
- 9) 大倉一郎,小笠原康二:接合位置を考慮したアルミニウム合金板の圧縮耐荷力,構造工学 論文集,Vol.56A, pp.111-121, 2010.
- 大倉一郎,小笠原康二:接合位置と板幅がアルミニウム合金板の曲げ耐荷力に与える影響, 土木学会論文集 A1(構造・地震工学), Vol.68, No.2, pp.287-299, 2012.
- 大倉一郎,寺川勝大:面内せん断を受けるアルミニウム長方形板の耐荷力,土木学会論文 集 A1 (構造・地震工学), Vol.69, No.3, pp.491-504, 2013.
- 大倉一郎, 佐藤純: 摩擦撹拌接合を考慮した突起付きアルミニウム合金板の提案, ALST 研究レポート, No.11, 2009. http://alst.jp/pdf/ALST_report11.pdf
- 西森文子,大倉一郎:座屈強度と終局強度を考慮した突起付きアルミニウム合金板の断面 形状,構造工学論文集,Vol.59A, pp.199-207, 2013.
- 14) 西森文子,大倉一郎: 圧縮を受けるアルミニウム合金自由突出板の耐荷力,ALST 研究レポ ート, No.34, 2014. http://alst.jp/pdf/ALST_report34.pdf
- 15) アルミニウム橋研究会:構造用アルミニウム合金材. http://alst.jp/pdf/aluminum_str_2.pdf
- 16) 大倉一郎,長尾隆史,石川敏之,萩澤亘保,大隅心平:構造用アルミニウム合金の応力-ひずみ関係および接合によって発生する残留応力の定式化,土木学会論文集 A, Vol.64, No.4, pp.789-805, 2008.
- 17) 日本アルミニウム協会(旧軽金属協会):アルミニウム合金土木構造物設計・製作指針案 (第1次改定試案),1998.
- 18) 大倉一郎,長尾隆史,石川敏之,萩澤亘保,大隅心平:構造用アルミニウム合金の応力-

ひずみ関係の定式化および MIG 接合と摩擦撹拌接合によって発生する残留応力の定式化, ALST 研究レポート, No.1, 2007. http://alst.jp/pdf/ALST_report1.pdf

- 19) 日本マーク:MARC, K6, 2005.
- 20) ECCS: European recommendations for aluminum alloy structures, First edn, 1978.
- 21) F.M. Mazzolani: Aluminum Alloy Structures: Second edition, E & FN Spon, 1995.

A6061-T6

非接合

中央接合(**図-6**.1)

				$\sigma_{fu}/\sigma_{p0.2}$							
1	$\lambda \qquad \sigma_{fu'} \sigma_{p0.2}$	_ / _	1	$B_f=20$	00mm	$B_f=40$	<i>B</i> _f =400mm)0mm		
λ			λ	残留	応力	残留応力		残留応力			
				なし	あり	なし	あり	なし	あり		
0.1	1.000		0.1	1.000	1.000	1.000	1.000	1.000	1.000		
0.2	0.990		0.2	0.989	0.989	0.989	0.989	0.989	0.989		
0.3	0.971		0.3	0.971	0.969	0.971	0.970	0.971	0.970		
0.4	0.948		0.4	0.950	0.944	0.949	0.949	0.949	0.948		
0.5	0.923		0.5	0.925	0.915	0.924	0.920	0.923	0.921		
0.6	0.894		0.6	0.899	0.884	0.896	0.892	0.896	0.893		
0.7	0.863		0.7	0.870	0.854	0.866	0.861	0.865	0.862		
0.8	0.825		0.8	0.835	0.819	0.831	0.825	0.829	0.826		
0.9	0.778		0.9	0.789	0.774	0.785	0.780	0.783	0.780		
1	0.718		1	0.729	0.715	0.725	0.720	0.723	0.721		
1.1	0.649		1.1	0.657	0.645	0.655	0.651	0.653	0.651		
1.2	0.578		1.2	0.583	0.574	0.582	0.578	0.581	0.578		
1.3	0.511		1.3	0.515	0.507	0.514	0.511	0.513	0.511		
1.4	0.452		1.4	0.454	0.449	0.454	0.451	0.453	0.452		
1.5	0.400		1.5	0.402	0.398	0.402	0.400	0.402	0.400		
1.6	0.357		1.6	0.358	0.355	0.358	0.356	0.358	0.356		
1.7	0.319		1.7	0.320	0.317	0.320	0.319	0.320	0.319		
1.8	0.287		1.8	0.288	0.285	0.288	0.286	0.287	0.287		
1.9	0.259		1.9	0.260	0.258	0.260	0.259	0.260	0.259		
2	0.235		2	0.236	0.234	0.236	0.235	0.235	0.235		

	$\sigma_{fi\prime}/\sigma_{p0.2}$										
		$B_f=40$	00mm		B_f =600mm						
λ	c=100		<i>c</i> =	150	<i>c</i> =	100	c = 1	200	<i>c</i> =250		
	残留	応力	残留	応力	残留	残留応力		応力	残留応力		
	なし	あり	なし	あり	なし	あり	なし	あり	なし	あり	
0.1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
0.2	0.990	0.989	0.985	0.986	0.989	0.989	0.987	0.988	0.985	0.987	
0.3	0.971	0.971	0.962	0.964	0.970	0.969	0.967	0.967	0.963	0.965	
0.4	0.948	0.950	0.934	0.938	0.948	0.946	0.942	0.943	0.937	0.939	
0.5	0.923	0.925	0.902	0.909	0.922	0.920	0.914	0.915	0.906	0.910	
0.6	0.894	0.899	0.861	0.877	0.895	0.890	0.882	0.883	0.870	0.878	
0.7	0.863	0.870	0.806	0.843	0.863	0.858	0.843	0.848	0.823	0.842	
0.8	0.825	0.835	0.736	0.803	0.824	0.820	0.792	0.807	0.761	0.801	
0.9	0.778	0.789	0.659	0.755	0.774	0.774	0.725	0.759	0.689	0.751	
1	0.718	0.729	0.589	0.700	0.709	0.717	0.651	0.701	0.616	0.692	
1.1	0.649	0.657	0.526	0.635	0.637	0.648	0.579	0.637	0.549	0.627	
1.2	0.578	0.583	0.470	0.568	0.565	0.576	0.515	0.570	0.489	0.561	
1.3	0.511	0.515	0.420	0.504	0.500	0.509	0.459	0.506	0.435	0.499	
1.4	0.452	0.454	0.377	0.446	0.443	0.450	0.410	0.449	0.388	0.443	
1.5	0.400	0.402	0.339	0.393	0.394	0.399	0.366	0.398	0.347	0.392	
1.6	0.357	0.358	0.306	0.345	0.352	0.356	0.340	0.353	0.312	0.345	
1.7	0.319	0.320	0.277	0.304	0.315	0.318	0.296	0.313	0.281	0.304	
1.8	0.287	0.288	0.251	0.269	0.284	0.286	0.268	0.279	0.255	0.270	
1.9	0.259	0.260	0.229	0.240	0.259	0.258	0.243	0.250	0.232	0.241	
2	0.235	0.236	0.210	0.215	0.234	0.234	0.221	0.225	0.211	0.216	

中間接合(図-6.2と図-6.3)

	$\sigma_{fu}/$	$\sigma_{p0.2}$	$\sigma_{fu'}/\sigma_{p0.2}$							
	$B_f=40$	00mm					$B_f = 60$)0mm		
λ	c=100	c=150		λ	c=100		c=2	200	<i>c</i> =250	
	残留応力	残留応力			残留	応力	残留	応力	残留応力	
	なし	なし			なし	あり	なし	あり	なし	あり
0.108	1.000	1.000		0.105	1.000	1.000	1.000	1.000	1.000	1.000
0.216	0.987	0.985		0.210	0.988	0.988	0.987	0.988	0.986	0.989
0.323	0.967	0.963		0.315	0.970	0.966	0.967	0.968	0.965	0.970
0.431	0.945	0.938		0.420	0.948	0.941	0.943	0.944	0.941	0.948
0.539	0.918	0.907		0.525	0.922	0.911	0.916	0.918	0.912	0.925
0.647	0.886	0.867		0.630	0.894	0.879	0.884	0.890	0.877	0.899
0.755	0.844	0.813		0.735	0.860	0.845	0.844	0.862	0.832	0.873
0.863	0.787	0.747		0.840	0.815	0.807	0.789	0.831	0.772	0.845
0.970	0.715	0.681		0.945	0.756	0.756	0.722	0.796	0.706	0.813
1.078	0.642	0.621		1.050	0.684	0.692	0.651	0.752	0.643	0.776
1.186	0.576	0.566		1.155	0.608	0.621	0.586	0.697	0.585	0.731
1.294	0.518	0.516		1.260	0.537	0.552	0.529	0.634	0.531	0.677
1.402	0.466	0.470		1.365	0.476	0.488	0.477	0.569	0.481	0.617
1.509	0.419	0.429		1.470	0.423	0.432	0.431	0.508	0.436	0.557
1.617	0.378	0.392		1.575	0.377	0.383	0.389	0.455	0.396	0.501
1.725	0.342	0.360		1.680	0.338	0.342	0.341	0.404	0.361	0.449
1.833	0.310	0.332		1.785	0.304	0.306	0.320	0.359	0.329	0.399
1.941	0.281	0.307		1.890	0.274	0.275	0.292	0.320	0.302	0.353
2.049	0.257	0.284		1.995	0.248	0.249	0.267	0.285	0.278	0.315
2.156	0.235	0.263		2.100	0.226	0.225	0.245	0.256	0.257	0.282

増厚中間接合 (図−6.4と図−6.5)

A6005C-T5 (図-6.6)

非接合

中央接合	•
------	---

増厚中間接合

2	,
λ	$\sigma_{fu}/\sigma_{p0.2}$
0.1	1.000
0.2	0.983
0.3	0.961
0.4	0.935
0.5	0.907
0.6	0.877
0.7	0.845
0.8	0.806
0.9	0.757
1	0.699
1.1	0.631
1.2	0.563
1.3	0.499
1.4	0.443
1.5	0.393
1.6	0.351
1.7	0.314
1.8	0.283
1.9	0.256
2	0.232

λ	$\sigma_{fu}/\sigma_{p0.2}$
0.094	1.000
0.189	0.986
0.283	0.966
0.377	0.941
0.471	0.912
0.566	0.884
0.660	0.856
0.755	0.825
0.849	0.787
0.943	0.740
1.038	0.681
1.132	0.615
1.226	0.550
1.321	0.491
1.415	0.437
1.509	0.391
1.604	0.351
1.698	0.316
1.792	0.286
1.887	0.260

中間接合						
λ	$\sigma_{fu}/\sigma_{p0.2}$					
0.1	0.999					
0.2	0.980					
0.3	0.954					
0.4	0.925					
0.5	0.891					
0.6	0.849					
0.7	0.796					
0.8	0.731					
0.9	0.663					
1	0.597					
1.1	0.536					
1.2	0.481					
1.3	0.431					
1.4	0.387					
1.5	0.348					
1.6	0.314					
1.7	0.284					
1.8	0.258					
1.9	0.235					
2	0.215					

λ	$\sigma_{fu}/\sigma_{p0.2}$
0.106	0.999
0.212	0.981
0.318	0.956
0.424	0.928
0.530	0.896
0.636	0.855
0.742	0.803
0.848	0.742
0.954	0.680
1.060	0.621
1.166	0.565
1.272	0.513
1.378	0.466
1.484	0.424
1.590	0.386
1.696	0.351
1.802	0.321
1.908	0.294
2.014	0.270
2.120	0.248

	$\sigma_{fu'}/\sigma_{p0.2}$								
1		中央接合			中間接合				
λ	非接合				<i>B_f</i> =400mm		<i>B_f</i> =600mm		
	<i>B_f</i> =200mm	<i>B_f</i> =400mm	<i>B_f</i> =600mm	c=100	c=100	c=200	c=250		
0.1	0.999	0.998	0.998	0.998	0.998	0.998	0.999	0.999	
0.2	0.986	0.974	0.980	0.982	0.976	0.978	0.983	0.986	
0.3	0.960	0.933	0.947	0.952	0.949	0.932	0.959	0.965	
0.4	0.911	0.874	0.897	0.902	0.910	0.900	0.924	0.936	
0.5	0.851	0.797	0.830	0.839	0.859	0.834	0.879	0.898	
0.6	0.787	0.715	0.755	0.767	0.789	0.765	0.816	0.847	
0.7	0.721	0.634	0.682	0.696	0.716	0.693	0.746	0.780	
0.8	0.657	0.563	0.614	0.629	0.644	0.622	0.677	0.708	
0.9	0.598	0.518	0.552	0.568	0.573	0.555	0.609	0.638	
1	0.544	0.462	0.498	0.515	0.508	0.496	0.544	0.573	
1.1	0.494	0.399	0.451	0.467	0.450	0.447	0.484	0.509	
1.2	0.449	0.359	0.410	0.424	0.399	0.402	0.431	0.450	
1.3	0.408	0.325	0.373	0.386	0.356	0.364	0.386	0.399	
1.4	0.369	0.295	0.339	0.351	0.319	0.331	0.347	0.357	
1.5	0.335	0.270	0.309	0.319	0.288	0.302	0.313	0.319	
1.6	0.304	0.247	0.282	0.291	0.261	0.275	0.283	0.287	
1.7	0.276	0.227	0.258	0.265	0.238	0.251	0.257	0.259	
1.8	0.252	0.209	0.236	0.243	0.217	0.230	0.234	0.234	
1.9	0.230	0.193	0.217	0.222	0.199	0.212	0.213	0.212	
2	0.210	0.178	0.199	0.204	0.183	0.194	0.195	0.193	

A5083-O (図−7.1~7.3)